• 教学
  • 下载
  • 作文
  • 知识
  • 课件
  • 教案
当前位置:问学网教学网数学教学高中数学教法研究如何培养高考数学应试能力?» 正文

如何培养高考数学应试能力?

[03-21 02:00:21]   来源:http://www.wenxue9.com  教法研究   阅读:8221

概要:2、跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。九、以退为进,立足特殊,发展一般对于一个比较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。十、执果索因,逆因思考,正难则反对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。顺向推有困难就逆推,直接证有困难就

如何培养高考数学应试能力?,标签:高中数学教法,高中数学教材教法,http://www.wenxue9.com
  2、跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
  九、以退为进,立足特殊,发展一般
  对于一个比较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
  十、执果索因,逆因思考,正难则反
  对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。顺向推有困难就逆推,直接证有困难就反证。如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手,找必要条件。
  十一、回避结论的肯定与否定,解决探索性问题
  对探索性问题,不必追求结论的“是”与“否”,“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
  十二、应用性问题思路,面——点——线
  解决应用性问题,首先要全面审查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”。如此就可将应用性问题转化为纯数学问题。当然,求解过程不能离开实际背景。

上一页  [1] [2] 


Tag:教法研究高中数学教法,高中数学教材教法数学教学 - 高中数学 - 教法研究


上一篇:高三数学复习教学设计 求数列通项
[已有条评论] 我来点评
验证码: 昵称: